9,175 research outputs found

    Amorphous thin film growth: theory compared with experiment

    Full text link
    Experimental results on amorphous ZrAlCu thin film growth and the dynamics of the surface morphology as predicted from a minimal nonlinear stochastic deposition equation are analysed and compared. Key points of this study are (i) an estimation procedure for coefficients entering into the growth equation and (ii) a detailed analysis and interpretation of the time evolution of the correlation length and the surface roughness. The results corroborate the usefulness of the deposition equation as a tool for studying amorphous growth processes.Comment: 7 pages including 5 figure

    Superconducting Puddles and "Colossal'' Effects in Underdoped Cuprates

    Full text link
    Phenomenological models for the antiferromagnetic (AF) vs. d-wave superconductivity competition in cuprates are studied using conventional Monte Carlo techniques. The analysis suggests that cuprates may show a variety of different behaviors in the very underdoped regime: local coexistence or first-order transitions among the competing orders, stripes, or glassy states with nanoscale superconducting (SC) puddles. The transition from AF to SC does not seem universal. In particular, the glassy state leads to the possibility of "colossal'' effects in some cuprates, analog of those in manganites. Under suitable conditions, non-superconducting Cu-oxides could rapidly become superconducting by the influence of weak perturbations that align the randomly oriented phases of the SC puddles in the mixed state. Consequences of these ideas for thin-film and photoemission experiments are discussed.Comment: RevTeX 4, revised expanded version, 8 pages, 8 figure

    Phase Fluctuations in Strongly Coupled dd-Wave Superconductors

    Full text link
    We present a numerically exact solution for the BCS Hamiltonian at any temperature, including the degrees of freedom associated with classical phase, as well as amplitude, fluctuations via a Monte Carlo (MC) integration. This allows for an investigation over the whole range of couplings: from weak attraction, as in the well-known BCS limit, to the mainly unexplored strong-coupling regime of pronounced phase fluctuations. In the latter, for the first time two characteristic temperatures TT^\star and TcT_c, associated with short- and long-range ordering, respectively, can easily be identified in a mean-field-motivated Hamiltonian. TT^\star at the same time corresponds to the opening of a gap in the excitation spectrum. Besides introducing a novel procedure to study strongly coupled d-wave superconductors, our results indicate that classical phase fluctuations are not sufficient to explain the pseudo-gap features of high-temperature superconductors (HTS).Comment: 5 pages, 3 figure

    Colossal Effects in Transition Metal Oxides Caused by Intrinsic Inhomogeneities

    Get PDF
    The influence of quenched disorder on the competition between ordered states separated by a first-order transition is investigated. A phase diagram with features resembling quantum-critical behavior is observed, even using classical models. The low-temperature paramagnetic regime consists of coexisting ordered clusters, with randomly oriented order parameters. Extended to manganites, this state is argued to have a colossal magnetoresistance effect. A scale T* for cluster formation is discussed. This is the analog of the Griffiths temperature, but for the case of two competing orders, producing a strong susceptibility to external fields. Cuprates may have similar features, compatible with the large proximity effect of the very underdoped regime.Comment: 4 pages, 4 figure

    On Pebble Automata for Data Languages with Decidable Emptiness Problem

    Get PDF
    In this paper we study a subclass of pebble automata (PA) for data languages for which the emptiness problem is decidable. Namely, we introduce the so-called top view weak PA. Roughly speaking, top view weak PA are weak PA where the equality test is performed only between the data values seen by the two most recently placed pebbles. The emptiness problem for this model is decidable. We also show that it is robust: alternating, nondeterministic and deterministic top view weak PA have the same recognition power. Moreover, this model is strong enough to accept all data languages expressible in Linear Temporal Logic with the future-time operators, augmented with one register freeze quantifier.Comment: An extended abstract of this work has been published in the proceedings of the 34th International Symposium on Mathematical Foundations of Computer Science (MFCS) 2009}, Springer, Lecture Notes in Computer Science 5734, pages 712-72

    Altitude variation of ion composition in the midlatitude trough region - Evidence for upward plasma flow

    Get PDF
    Altitude effect on ion concentration in midlatitude trough and plasmaspher

    Mirror Symmetry and Landau Ginzburg Calabi-Yau Superpotentials in F-theory Compactifications

    Get PDF
    We study Landau Ginzburg (LG) theories mirror to 2D N=2 gauged linear sigma models on toric Calabi-Yau manifolds. We derive and solve new constraint equations for Landau Ginzburg elliptic Calabi-Yau superpotentials, depending on the physical data of dual linear sigma models. In Calabi-Yau threefolds case, we consider two examples. First, we give the mirror symmetry of the canonical line bundle over the Hirzebruch surfaces Fn\bf F_n. Second, we find a special geometry with the affine so(8) Lie algebra toric data extending the geometry of elliptically fibered K3. This geometry leads to a pure N=1 six dimensional SO(8) gauge model from the F-theory compactification. For Calabi-Yau fourfolds, we give a new algebraic realization for ADE hypersurfaces.Comment: 27 pages, latex. To appear in Journal of Physics A: Mathematical and Genera
    corecore